(资料图片仅供参考)

部分物质随着温度和压力的变化,会相应的呈现出固态、液态、气态三种相态。三态之间相互转化的温度和压力称为三相点,除三相点外,分子量不太大的稳定物质还存在一个临界点,临界点由临界温度、临界压力和临界密度构成,当把处于气液平衡的物质升温升压时,热膨胀引起液体密度减少,压力升高使气液两相的界面消失,成为均相体系,这一点成为临界点。

高于临界温度和临界压力以上的流体是超临界流体。超临界流体处于气液不分的状态,没有明显的气液分界面,既不是液体也不是气体。由于超临界流体处于超临界状态,对温度和压力的改变十分敏感,具有十分独特的物理性质,它的黏度低、密度大,有良好的流动、传质、传热和溶解性能,因此被广泛用于节能、天然产物萃取、聚合反应、超微粉和纤维的生产,喷料和涂料、催化过程和超临界色谱等领域。将超临界流体应用到这些领域中的技术统称为超临界流体技术。

超临界流体的特点是什么?

超临界流体具有液体和气体的双重特性,有与液体接近的密度,又与气体接近的黏度及高的扩散系数,因此具有很强的溶解能力和良好的流动、传递性能。处于临界温度和临界压力附近的超临界流体密度仅仅是温度和压力的函数,所以在合适的温度和压力下,它能够提供足够的密度来保证足够强的溶解性。

超临界流体技术是什么?

超临界萃取技术:1978年德国建成第一套萃取咖啡因的工业装置以来,超临界萃取技术受到人们广泛关注。目前,超临界萃取技术逐渐应用到食品、医药、香料和化工等领域。萃取过程主要采用超临界二氧化碳作为萃取溶剂,超临界二氧化碳溶解能力强、萃取能力高,分离工艺简单,且二氧化碳低廉、无毒、惰性、无残留,最具应用前景。目前广泛应用于产品、医药和化妆品行业。超临界流体可从植物种子、果实、叶子和花朵等部位萃取出有机化合物,在植物油工业中,利用超临界流体萃取技术来替代传统提取、分离和分级分离过程,已有大量的应用研究。

颗粒制造技术:固体溶质在超临界流体中的溶解度由操作温度和压力调节。溶解在高密度超临界流体中的溶质通过喷嘴快速降压后,固体溶质能够以较细颗粒结晶析出并提供了一项超细颗粒的制造技术。该技术包含两种实现方式,既快速膨胀法及抗溶剂法。研究者们在色素、药物的超细颗粒制造做了大量的工作,且制备了尺寸可控,性能优异的超细颗粒。以超临界流体为溶剂制备锂电池中正极材料LiCo-PO4,得到易于控制粒径分布的纳米棒和纳片,明显改善了电池的循环和倍率等电化学性能。

环境治理技术:超临界流体的特殊性质和技术原理决定了其应用于环境保护的可能性和理论基础。传统的处理方法不能彻底消除污染且能耗大,但超临界水能把聚合物降解成单体和小分子物质用于回收利用。超临界方法再生活性炭技术、超临界水氧化处理废水技术逐渐应用到工业中来,在经济、资源利用和环境保护方面具有明显优势

推荐内容